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Fig. 1. An X-shell is a deformable mechanism that can be assembled from linear beam elements in a flat configuration and deployed to a desired 3D target
form. Our algorithm computes the layout and parameters of the flexible beam network as well as a sparse pattern of actuation forces required to deploy the
structure. The sequence illustrates the deployment process, where torque actuators at the joints are stylized in red and blue. The top right image shows a

design study for a potential architectural application with additional cladding.

We present X-shells, a new class of deployable structures formed by an en-
semble of elastically deforming beams coupled through rotational joints. An
X-shell can be assembled conveniently in a flat configuration from standard
elastic beam elements and then deployed through force actuation into the
desired 3D target state. During deployment, the coupling imposed by the
joints will force the beams to twist and buckle out of plane to maintain a state
of static equilibrium. This complex interaction of discrete joints and contin-
uously deforming beams allows interesting 3D forms to emerge. Simulating
X-shells is challenging, however, due to unstable equilibria at the onset of
beam buckling. We propose an optimization-based simulation framework
building on a discrete rod model that robustly handles such difficult scenar-
ios by analyzing and appropriately modifying the elastic energy Hessian.
This real-time simulation method forms the basis of a computational design
tool for X-shells that enables interactive design space exploration by varying
and optimizing design parameters to achieve a specific design intent. We
jointly optimize the assembly state and the deployed configuration to ensure
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the geometric and structural integrity of the deployable X-shell. Once a
design is finalized, we also optimize for a sparse distribution of actuation
forces to efficiently deploy it from its flat assembly state to its 3D target state.
We demonstrate the effectiveness of our design approach with a number
of design studies that highlight the richness of the X-shell design space,
enabling new forms not possible with existing approaches. We validate our
computational model with several physical prototypes that show excellent
agreement with the optimized digital models.
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1 INTRODUCTION

Modeling and simulation of deformable objects is a core topic in
computer graphics. Recent efforts have focused on predictive simula-
tion and design exploration of physical structures for computational
design and fabrication [Attene et al. 2018; Bickel et al. 2018].

An interesting class of deformable objects are deployable struc-
tures that can transition between two or more distinct geometric
configurations [Guseinov et al. 2017; Kilian et al. 2017; Konakovi¢-
Lukovi¢ et al. 2018b; Pérez et al. 2017]. In architectural design, grid-
shells are a particularly intriguing example. Pioneered by V. Shukhov
in 1896, gridshells have later been refined by Frei Otto in iconic de-
signs such as the Mannheim Multihalle [Liddell 2015]. Gridshells are
assembled on the ground as a regular quadrilateral grid of flexible
beams that are connected at rotational joints. The joints allow the
quads to shear which in addition to the elastic deformation of the
beams enables the structure to be deployed to a curved surface (see
Figure 2, top). Gridshells are attractive in architecture because they
are lightweight and structurally efficient [Mesnil 2013]. However,
relatively few realizations exist today, mainly due to the complex-
ity of deployment: a gridshell assumes its desired shape when the
boundary nodes are forced towards pre-defined positions, which
necessitates tailor-made erection equipment and significant tempo-
rary formwork [Quinn and Gengnagel 2014]. In addition, traditional
gridshells have a fairly limited space of realizable geometries and
often suffer from stress concentrations that can lead to material
failure [Tayeb et al. 2013].

We address these drawbacks and propose a new deployable struc-
ture called X-shell. Similar to gridshells, an X-shell is formed by a
network of interconnected beams that are assembled in a flat config-
uration. In contrast to gridshells, however, these beams do not form
a regular grid, nor are they necessarily straight in the flat assem-
bly state. More importantly, the deployment of X-shells is achieved
through intrinsic actuation, i.e. by applying a torque at certain joints
to expand the initially flat beam network (Figure 1). The target shape
of an X-shell is encoded in the flat rest configuration and does not
rely on constraints imposed on the boundary nodes. Therefore, the
deployment does not require any formwork or complex support
structures. Note that a traditional gridshell actuated in this way
would simply shear in the plane and not assume a curved 3D shape.

In our work, we leverage the “incompatibility” of the beam net-
work in terms of a linkage mechanism to force the beams to buckle
out of plane and assume the desired curved target shape. As such,
X-shells can be considered as a special kind of mechanical linkage
where the commonly used rigid elements are replaced by flexible
elements that can bend and twist. This unique dynamic behavior
poses significant challenges for robust numerical simulation and
design optimization that we address in this paper.

Computer graphics research has studied numerous other types
of shape-shifting or deployable structures that we discuss more
thoroughly in Section 2. What is common to these methods is that
the kinematics of deployment as well as considerations about mate-
riality, fabrication, and assembly impose numerous geometric and
physical constraints. These constraints typically define intricate
design trade-offs that can be extremely difficult to navigate by hand.
As a consequence, effective design exploration is often only possible
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Fig. 2. A traditional gridshell is formed by a regular grid of elastic beams
that assumes a curved shape when lifted and fixed along the boundary to a
pre-defined curve. In contrast, X-shells have their target shape encoded in
the flat non-uniform layout and can be deployed to an equilibrium state
via actuation at a small set of joints. Top images from the Solidays’ Festival
[Caron et al. 2012] by permission of Cyril Douthe.

with computational support. This is certainly true in our case, where
the coupling of elastic beams in the network defines a complex de-
formation behavior of the structure that is very hard to predict or
control manually.

Contributions. To facilitate predictive form-finding and interac-
tive design of X-shells we introduce the following core technical
contributions:

o An efficient and numerically robust simulation algorithm to
compute the 3D equilibrium states of an X-shell under torque
actuations at the joints;

e an optimization approach that adapts the design parame-
ters of an initial flat assembly state so that it deploys into a
low-stress state that remains close to a given 3D reference
geometry; and

e an algorithm to compute a sparse set of actuated joints for
driving the deployment from flat to target shape.

We combine these methods into a computational tool for interac-
tive exploration of X-shell designs. We show that X-shells offer a
rich design space that enables the construction of new deployable
structures not possible with existing methods. We highlight applica-
tions in architecture and demonstrate the validity of our approach
through several design studies and physical prototypes.

Overview. The rest of the paper is organized as follows: After
discussing related work, we define in Section 3 our mathematical
representation that encodes all the relevant geometric and physical
parameters of an X-shell. Sections 4 to 6 then present the core techni-
cal contributions listed above, i.e. algorithms for forward simulation,



design optimization, and actuation sparsification. In Section 7 we
show results created with our approach, before concluding with a
discussion of limitations and ideas for future research.

We discuss additional implementation aspects of our numerical
optimization methods in the appendix and have released a C++
implementation of our simulation algorithms, along with Jupyter
notebooks for simulating and visualizing the deployment for all
X-shells shown in the paper, at http://lgg.epfl.ch/XShells. Please
also refer to the supplemental material, where we provide detailed
derivations of our energy and constraint functions, gradients, and
Hessians.

2 RELATED WORK

Computer graphics and related disciplines have recently seen in-
creasing interest in computational design for digital fabrication. For
a general overview we refer to recent surveys [Attene et al. 2018;
Bermano et al. 2017; Bickel et al. 2018]. The main application do-
main of our work is architectural design and we refer [Pottmann
et al. 2015] for a broad discussion on recent advances in the field of
architectural geometry. Here we focus the discussion on prior art
that is most closely related to our work.

Curved Surfaces from Flat Materials. An important aspect of X-
shells is that they can be assembled in the plane and then deployed to
the desired 3D target shape. A series of recent papers explore differ-
ent ways to form 3D shapes from easy-to-fabricate planar materials.
[Schiiller et al. 2018] propose a method for the design and fabrication
of complex surfaces with a single, ribbon-like piece of flat fabric.
When zippered up along its boundary, the fabric approximates a
given 3D shape. Malomo and colleagues [2018] design flat, flexible
panels from spiraling microstructures. The panels are optimized
to be in a static equilibrium when assembled to match a desired
3D surface. [Konakovi¢ et al. 2016] leverage conformal geometry
to rationalize curved surfaces with auxetic materials, created by
cutting inextensible sheet material with a fixed patterns to enable
limited uniform stretching. [Garg et al. 2014] utilize Chebyshev nets
to create 3D designs from woven metal wires arranged in a regular
grid.

Deployment-aware Design. Other works have explored fabrication-
aware design that also takes into account the deployment process.
[Kilian et al. 2017] propose a method for curved folded surfaces
that transition from planar sheets to freeform shapes actuated by a
network of strings, making the actuation process an integral part
of the structure. Rigid-foldable origami can also be used to design
deployable shells at architectural scale [Tachi 2013]. Inspired by
the mechanism of the Hoberman Sphere, [Zheng et al. 2016] design
deployable rigid scissor linkages that approximate 3D models while
ensuring a collision-free expansion path.

Several previous works have studied how to encode a target 3D
shape into a flat sheet of material augmented with an actuation logic.
[Guseinov et al. 2017] and [Pérez et al. 2017] use prestressing as a
driving force. They embed 3D printed elements in a pre-stretched
membrane which contracts to a prescribed 3D form when released.
[Konakovi¢-Lukovi¢ et al. 2018a,b] work with varying scale auxetic
materials and rely on inflation and gravitational loading to deform
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a flat sheet towards the desired 3D configuration. [Celli et al. 2018]
show how curved shapes can arise through buckling of planar elastic
sheets when suitable architected patterns are cut into the material.

In our approach we simulate and optimize a network of elastic
beams coupled with rotational joints. This setup is fundamentally
different from the above methods, both in the physical composition
of the structure and the applied deployment mechanism. Conse-
quently, we need a new representation and optimization approach
to accurately model the behavior of X-shells.

Mechanical Linkages. Kinematic linkages have been used to create
animated structures whose rigid parts trace out user-specified planar
curves [Bacher et al. 2015; Ceylan et al. 2013; Thomaszewski et al.
2014]. Our X-shells’ buckling behavior suggests a possible avenue to
extend these methods to generate out-of-plane motion by harnessing
the buckling of deformable, geometrically “incompatible” parts.

Gridshells. The closest form of deployable structures to our X-
shells are elastic gridshells. Here we do not consider static gridshells,
e.g. [Mesnil et al. 2017; Pietroni et al. 2015; Tang et al. 2014; Tonelli
et al. 2016] that are not deployable and thus need to be constructed
incrementally in place.

Traditional elastic gridshells are composed of straight elastic
beams linked to form a regular quadrilateral grid. They achieve
their final shape by active bending [Du Peloux 2017; Lienhard 2014].
The main methods of erection are pull up with cranes and cables,
push up with static framework and jacking towers, and ease down
with hydraulic and mechanical formwork [Quinn and Gengnagel
2014]. Contrary to our setup, the final shape of a gridshell is largely
determined by its boundary, where boundary nodes have to be
explicitly fixed to a prescribed location. During erection, a gridshell
often has to go through high-energy configurations until it settles
in the final shape when the boundary is fixed. To increase safety
and reduce the time and cost of manufacturing and erecting an
elastic gridshell, [Liuti et al. 2017; Quinn and Gengnagel 2014] study
erection with pneumatic formwork.

[Hernandez et al. 2012] and [Hernandez et al. 2013] present a
variational approach to modeling elastic gridshells, where joints
are allowed to deviate from the regular grid locations. Their goal
is to improve the structural performance of gridshells by reducing
the curvature of beams, while our focus is on accurate and robust
simulation of the physical behavior of flexible linkages that are
directly optimized to minimize elastic energy.

Rod Simulation. Various approaches for elastic rod simulation
have been studied in [Bertails et al. 2006; Pai 2002; Spillmann and
Teschner 2007; Umetani et al. 2014] based on Cossarat theory and
in [Rosenblum et al. 1991; Selle et al. 2008; Iben et al. 2013] using
mass-spring models. Our numerical simulation of X-shells is based
on the discrete elastic rods model first proposed in [Bergou et al.
2008]. Specifically, we use the efficient framed curve representation
from [Bergou et al. 2010], which updates the frame using parallel
transport over time to ensure sparse Hessians.

This elastic rods model was extended by [Pérez et al. 2015] to
model elastically deforming connections between rods in order to
simulate and design flexible rod meshes that closely approximate
target deformations. A similar elastic joint model has been used to
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model networks of elastic rods in [Zehnder et al. 2016] to design
attractive and robust curves that fill in a target surface, in [Malomo
et al. 2018] as a homogenized model for flexible spiral microstruc-
tures, and in [Schumacher et al. 2018] to determine the homogenized
mechanical properties of isohedral polygonal tilings of rods. Baek et
al. [2017] use the discrete elastic rods model to simulate traditional
elastic gridshells, modeling the joint constraints with positional
springs (rods remain twist free). They use Chebyshev nets to design
the gridshell boundaries to achieve simple surface building blocks
and show how these can assembled into more interesting structures.
All these methods have shown the discrete elastic rods model’s
excellent agreement with physical prototypes.

We extend the elastic rods model with constraints to properly
capture the connection of rod ends at the joints. Furthermore, we
can handle arbitrary rod cross-section profiles, which provides addi-
tional degrees of freedom for design and enables us to incorporate
important fabrication requirements.

3 X-SHELL REPRESENTATION

X-shells are networks of elastic beams that are linked at rotational
joints (see Figure 3). We define the topology of the network with a
graph, where each node represents a joint and each edge denotes a
beam segment. We currently restrict our representation to quadrilat-
eral topologies, where every interior node has valence four (hence
the name X-shell) and boundary nodes have valence three, two, or
one. A node with valence one denotes a free end of a beam.

We base our numerical simulation of X-shells on the discrete
elastic rods model of [Bergou et al. 2010]. This model allows us to
capture the elastic forces induced by bending, twisting, and stretch-
ing the structure’s beams. Every beam segment connecting two
joints is represented as a distinct elastic rod r € R, discretized with
k linear elements. Constraints are added to properly couple the rod
ends at the joints.

The joints themselves store no elastic energy; they simply con-
strain the incident beam segments to pass through a common point
with compatible orientations and material axes. We impose these
joint constraints exactly by constructing a reduced set of variables
x € R™ that parametrize the space of properly joined rods. Specifi-
cally, for each joint we define nine variables controlling its position,
orientation, opening angle, and two edge lengths (Figure 3). These
variables fully determine the material axis angle and the two cen-
terline positions for the terminal edge of each incident elastic rod
(dark gray dots on the left in Figure 3). Note that two rods connect-
ing across a joint have overlapping terminal edges; we halve the
stretching stiffnesses of these edges to avoid double-counting their
energy. All of the remaining rod centerline positions and material
angles (for internal edges and free ends) are included as reduced
variables in x. The position and orientation of a single joint is fixed
(removed from x) to pin down the structure’s rigid motion.

We can calculate the elastic energy stored in a given X-shell con-
figuration with reduced variables x by summing the elastic energies
of each rod:

[R]
E(x,p) = Z Es(vr(x),p) + Ep(vr (%), p) + Er(vr(x),p). (1)

r=1
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Fig. 3. X-shell representation. The network of elastic beams is modeled as
a collection of individual rods coupled at rotational joints. The vector x
aggregates all the variables of our reduced model representation designed
to facilitate efficient and robust numerical computations. Note that two rod
position vectors and one frame angle at each end of a rod are defined by
the variables of the corresponding joint.

Here Es, Ep, and E; are the stretching, bending, and twisting ener-
gies, respectively, v, is a nonlinear function computing the center-
line position and material angle variables for rod r from the reduced
variables x, and p is a vector that stores the rest lengths for each
beam segment. The per-edge stretching and per-vertex twisting
energy expressions are taken from [Bergou et al. 2010]. For the
per-vertex bending energy term, we note that averaging the ma-
terial axes onto the vertices, as effectively done in [Bergou et al.
2010] and the recent computational fabrication papers using this
method, yields a non-orthonormal material frame in the presence of
twist. We prefer the original, more physically meaningful bending
energy of [Bergou et al. 2008], which averages the two curvature
energies computed with each incident edge’s quadratic form. Our
framework implements both bending energies, and we provide de-
tailed expressions for all energy terms in the supplemental material.
Our supplement also points out errors in the analytic gradients and
Hessians provided in [Bergou et al. 2010] and provides corrected
expressions.
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Fig. 4. Computing the twisting stiffness k; for an arbitrary beam cross-

section profile Q. Colors show the warping displacement function ¥. The
examples in the bottom row are re-scaled to match the same color map.

Material Parameters. The deformation behavior of an X-shell as
described by (1) depends on the geometric structure of the linkage
and the elastic properties of the beams. For a single beam of a given
homogeneous material, the stiffness parameters for stretching ks,
bending k, and twisting k; depend on the Young’s modulus E and
shear modulus G of the material, as well as the cross-section profile
Q of the beam. Following [Landau et al. 1989], we can compute the
stiffness parameters as:

o Stretching stiffness ks = EA, where A is the area of Q;

—xzy] dxdy

o Bending stiffness kj, = EI, where I = /Q —yxy .

is the moment of inertia tensor;
o Twisting stiffness k; = G/QH (_xy) + Vi/||? dA, where 1 is

a scalar field defined on Q that represents the out-of-plane
displacement under an applied torsion; it satisfies the Laplace
equation AY = 0 in Q with Neumann boundary conditions
n-Vy=n- (_yx) on 0Q.

We compute these stiffnesses by meshing the cross-section with
Triangle [Shewchuk 1996] and using exact quadrature. We solve the
Laplace equation for the warping displacement ¢ using quadratic
finite elements [Hughes 2012].

An important benefit of this approach is that we can compute
stiffness parameters for arbitrary beam profile geometries (see Fig-
ure 4). As we discuss in more detail in Section 7, this allows us
to incorporate important architectural features into the design of
X-shell beams, such as cable canals or frame fixtures. In addition, the
cross-section geometry of the beams provides additional degrees of
freedom for design, since the deployed state of an X-shell depends
directly on the beam stiffness parameters (see also bottom row of
Figure 14).

4 FORWARD SIMULATION

With the above representation for the geometry and material proper-
ties of an X-shell structure, we can now formulate our optimization
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Fig. 5. Forward simulation: Given a user-provided network topology, our
method first solves for a low-energy planar configuration that matches the
desired joint locations, effectively determining the rest lengths of each beam.
Minimizing elastic energy with released joint constraints, while keeping the
structure planar, yields the assembly state. This state can then be deployed
by solving for actuation torques for the joints that achieve a user-specified
average opening angle.

algorithm to simulate the deployment from a given planar assembly
state towards a 3D target state.

We assume as input the graph topology of the beam network and
the 2D locations of the joints in the flat configuration. These are the
principal design parameters that we allow the user to interactively
manipulate as explained in Section 7. The forward simulation pro-
cess is split into two parts: an initialization that finds a low-energy
planar assembly state, and the deployment algorithm that computes
the deformation of the X-shell when applying torques at the joints
(see Figure 5).

Rest-length Optimization. Interesting deployed shapes emerge if
the joint positions deviate from a regular grid. In such cases, the
rigid scissor mechanisms of the linkage become incompatible and
rods deform and buckle out of plane when the joints are actuated.
Irregular joint spacings mean that the rods potentially need to be
bent in the flat assembly to smoothly interpolate the joint locations
in a low-energy state. This poses the challenge of determining their
rest lengths, which are essential parameters of the simulation algo-
rithm. We collect the rest length of each rod into a vector p € RIRI,
which will also serve as the design parameters for the subsequent
design optimization Section 5. The rest length of a rod is distributed
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evenly across all the k edges making up the rod (to promote a uni-
form discretization). We infer the initial structure’s rest lengths by
simultaneously minimizing the elastic energy of (1) over both the
rest-lengths of beam segments and their equilibrium configurations,
while holding the joint positions fixed at their input locations:

min E(x, p)
X.p

s.t. SjX = ijinput (2)
p>e.

Here, S; is a matrix selecting each joint’s position variables from
the full vector of state variables x, and € is a lower bound on the
rest length variables. We set this lower bound equal to 1/100 the
size of the smallest distance between segments. Effectively, this
optimization allows the beams to assume rest lengths that minimize
the elastic energy for a given set of 2D joint locations. We further
optimize this state as described in Section 5 to obtain a low-energy
planar state in which the beams can be assembled with minimal
required pre-stressing (see Figure 5).

Deployment Simulation. The planar beam network can now be
deployed by imposing a uniform torque at every joint in the set of
joints J selected for actuation. Initially J’ = J includes all joints.
In Section 6 we will discuss how to sparsify the actuation to obtain
a small set of actuation points for physical deployment.

By increasing the torque acting on the joints, we expand the struc-
ture towards its target shape. Instead of prescribing torques directly,
which would be difficult to quantify by the user, we solve for the
torques that achieve a user-specified average opening angle of @ at
the joints. Specifically, we simulate the deployment process by min-
imizing elastic energy while imposing a linear equality constraint
on the average of the joints’ angles to match « :

x"(p. @) = argmin E(x, p)
X

st Y ai=a ¢
L jeg' &j = Q.

The single Lagrange multiplier for this equality constraint tells us
the magnitude of torque that must be applied to each actuation joint.
To avoid inversions during the optimization, we also add the same
lower-bound constraint as in (2) on the joint edge length variables.
As we increase a, the structure is driven open as illustrated in
Figure 1. At some point in this deployment, the planar equilibrium
of the X-shell becomes unstable (a saddle point of the elastic energy),
and the structure abruptly pops out of the plane into a lower energy
configuration, realizing a curved surface in 3D.

Numerical Solver. We solve both minimization problems—inferring
rest lengths and simulating deployment—using our own Newton-
based solver, as we found off-the-shelf solvers like Knitro [Artelys
2019] neither fast enough nor sufficiently robust in dealing with
the many saddle points in the energy landscape of our X-shells. We
use an active set method to handle the bound constraints on the p
variables and implement hard constraints (like the joint positions
in the rest length solve) by removing the corresponding rows and
columns of the Hessian.

We focus our discussion on the deployment simulation problem
(3) because its linear equality constraint for actuation requires extra
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attention; the method for solving rest length is identical except for
the removal of the extra system row and column used to impose the
linear equality constraint. Each step of our Newton solver requires
solving the linear system:

H al [Ax| |-g
al o] |AA| ™ |Aw

for steps Ax and A2 of the state variables and the Lagrange multiplier
for the linear equality constraint, respectively. Here, g is the gradient
of the elastic energy (i.e., the net force acting on the X-shell),a € R™
is a vector with value 1/|J”| in each actuated joint angle variable
and 0 elsewhere, and H is the Hessian of the elastic energy with
respect to all optimization variables (including p in the rest length
solve) after it has been modified to be positive definite as discussed
below. A« is the requested increase in actuation angle.

To simulate the full deployment sequence, we subdivide the in-
terval between the closed and open actuation angles into individual
increments of size h. For each increment, we solve (4) once with
Aa = h and apply the full step Ax to the linkage. Now the linkage
has the requested average opening angle but is not at a minimum
energy configuration. Next we run several steps of our Newton
solver with Aa = 0 to place the structure back in equilibrium.

; ©)

Hessian modification. During the course of the simulation, and
particularly at the onset of buckling, the Hessian H of the linkage’s
elastic energy frequently becomes indefinite. Simply solving (4) in
this situation will often obtain a direction that increases the energy.
Even if a descent direction is found, the linkage will still be attracted
towards saddle points, which is not desirable. We therefore always
check if H is positive definite (by attempting a Cholesky factoriza-
tion) and modify it if not. A standard modification approach is to
add a scaled multiple of the identity matrix H + oI. [Nocedal and
Wright 2006]. Applying the inverse of this modified matrix to —g can
be interpreted as finding the step of a fixed length (depending on o)
that minimizes the local quadratic model; note that this local model
is unbounded from below, so we need to fix the step length. How-
ever, since our state variables x have different meanings (Figure 3)
and vastly different typical magnitudes, the Euclidean norm is a
poor measure of distance. Instead, we use the linkage’s mass matrix
M as our metric; then applying the inverse of the modified matrix
H = H + oM to —g has a physical meaning of computing the step
of fixed kinetic energy that minimizes elastic energy. We compute
the full linkage’s mass matrix M by assembling the per-rod lumped
mass matrices using the Jacobian of our mapping from reduced state
variables x to the individual rod variables. Note that we cannot use
a lumped mass matrix for the full linkage (e.g., by summing the
rows) because this generally has negative entries. However, M’s
sparsity pattern is a subset of H’s, so no additional work is added to
the factorization step.

We determine a reasonable initial guess for o based on the largest
eigenvalues of H and M (user-specified multiple of %) and
employ a strategy similar to Algorithm 3.3 in [Nocedal and Wright
2006] for updating o (multiplying it by 4 repeatedly until H becomes
positive definite and incrementally halving it when the modification

is successful.)
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Fig. 6. Design optimization. A user-provided initial beam layout leads to
high internal stresses (top), which manifests itself in undulations of the
beams in the deployed state. After optimization, this undesirable behavior is
eliminated while staying geometrically close to the desired target shape. The
models are colored by the square root of their pointwise bending energies.
The optimization reduces the total elastic energy of the X-shell by more
than 5X in the deployed state and more than 7x in the assembly state.

Because H is positive definite, we can compute its Cholesky fac-
torization and solve (4) with block elimination:

aioAz-alHg
aTH- la

If we start at or step near a saddle point, g will be approximately
zero even though the energy is not at a minimum. In this case,
we need to move in a direction of negative curvature [Gill et al.
1981] to quickly escape the saddle point. Thankfully, due to our
Hessian modification, we have already computed the factorization
needed to efficiently compute the eigenvector corresponding to the
most negative eigenvalue (for the generalized eigenvalue problem
Hd = AMd) using inverse power iteration. Whenever we detect
that H is indefinite and ||g|| is below a user-defined multiple of the
Newton solver’s gradient tolerance, we use the C++ library Spectra
to compute this eigenvector and add a scaled version of it to Ax to
compute our line search direction d. We pick the scaling so that the
largest physical velocity it induces on the rod geometry’s surface

, Ax= I:I_l(—g — Ala).
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Fig. 7. Convergence of the design optimization for two different X-shells.
The plots show the objective function of (5) over the number of iterations. A
quasi-Newton BFGS solver requires significantly more iterations than our
Newton-CG trust region approach.

(i.e. the maximum velocity of points on the swept cross-sections) is
1/100 the minimum arc length of any rod in the structure.

Our solver then does a standard backtracking Armijo line search
[Nocedal and Wright 2006] to compute a step along d that reduces
elastic energy.

Figure 1 and Figure 5 illustrate the deployment of an X-shell
computed with our optimization. See also the accompanying video
for more examples of the simulation algorithm and deployments of
physical models.

5 DESIGN OPTIMIZATION

The forward simulation approach described above is an essential tool
to explore the design space of X-shells. From an initial user-provided
planar beam network, we can quickly compute deployed states to
evaluate design alternatives. However, the complex deformation
behavior of X-shells makes it unlikely that the deployed state has
low internal stress. In practice we often observe high-frequency
undulations in the beams, because the initial joint locations are
not conducive to a low-energy deployed state (see Figure 6, top).
Manually adjusting the rest configuration is ineffective, because
small variations in the beam rest lengths can have complex global
influence on the shape and elastic energy of the deployed state.
Optimization of design parameters is thus crucial to obtain high-
quality X-shell designs.

This optimization problem is challenging, not only because simu-
lating the deployment is already a highly nonlinear optimization
problem in itself, but also because we care about two states of the
structure: the flat assembly state and the curved deployed state. We

ACM Trans. Graph., Vol. 38, No. 4, Article 83. Publication date: July 2019.
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want the assembly state to be truly flat, the deployed state to pro-
duce a desired 3D shape, and both states to experience reasonable
stresses/elastic energy. We formulate these goals as a minimization
of the following objective function:

(1-y)

D b))+ L1030, 0

2
212

J(p) = ﬁE(xzD(p), p)+

x55(p) = X" (p, @) (flat configuration state vars.),

x5p(p) := x"(p, @ig) (deployed configuration state vars.),

subject to the following planarity and minimum angle constraints
on the flat configuration:

c(p) = ISx5p(P)II* = 0
min(p) = KS(SaX;D(P)’ s) 2 €.

Here y € [0, 1] trades off between preferring low energy in the
deployed or flat state, § > 0 controls how closely we want to fit the
deployed structure’s joints to user-provided target geometry, target
fitting energy T (defined below) penalizes the deployed structure’s
distance to this target geometry, and Ey and [y are normalization
constants (the initial deployed structure’s energy and the length of
its bounding box diagonal, respectively).

Sz and S, are matrices selecting the joints’ z coordinates and
opening angles « from the full vector of state variables (these | | xm
matrices have a single 1 in each row and zeros everywhere else).

We use the popular constraint aggregation function KS(a, s) =
—slog(}}; e_”“'/s) [Kreisselmeier and Steinhauser 1979] as a smooth,
conservative approximation to the minimum. This smooth function
converges to the exact, non-differentiable minimum as s — 0, and
we found s = 0.01 to be a good trade-off between smoothness and
approximation fidelity.

The initial actuation angle g is chosen just large enough to keep
the structure’s minimum opening angle greater than some threshold
€ to avoid interpenetrations of neighboring beams in the assembly
state. The target actuation angle aig is specified by the user and
can be adjusted interactively during the optimization process.

Surface Fitting. The fitting energy term T penalizes deviation of
the joint positions from a user-provided target surface. This allows
the structure to slide along the design surface to minimize internal
stress and thus provide a more efficient X-shell. However, without
further constraints, joints displacements could be significant, poten-
tially even closing up the structure to reduce the elastic energy. We
therefore also incorporate in the fitting term a set of user-specified
target positions xgt for each joint, to which the joints are fit with
a smaller weight. This is analogous to the commonly used com-
bination of point-to-surface and point-to-point distance terms for
non-rigid registration [Chang et al. 2012]. The full fitting term is
then given by

1 2 1 2
T(x) = 5 lIx - Psurf(x)”‘/vsurf + 5 lIx - tht”wa (6)

where Py £(x) projects the joint positions of the deployed structure
configuration x onto their closest points on the target surface. The
diagonal matrix Wy,,¢ holds user-provided weights that indicate
the importance of fitting each individual joint to the surface (only
entries corresponding to joint position state variables are nonzero).
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Likewise, W is a diagonal matrix of fitting weights for each target
joint position in xtgt. We ensure all of the fitting weights (in Wyy¢
and W) sum to one so that f directly controls the over-all importance
of fitting.

Numerical Solver. Especially for high values of §, the three con-
flicting terms of the objective function lead to an ill-conditioned
optimization problem. This makes it is essential to incorporate ac-
curate Hessian information from the start. We found that a quasi-
Newton method such as BFGS [Nocedal and Wright 2006] requires
too many iterations to converge (see Figure 7); recall that each iter-
ation of the design optimization requires re-solving for both the flat
and deployed equilibria (3). On the other hand, computing the full,
dense Hessian of J and ¢ with respect to the design variables p is
intractable. We therefore propose to solve this optimization prob-
lem with a Newton-CG trust region method. This approach allows
larger step sizes and thus converges in fewer iterations, but only
requires computing analytic gradients of J and ¢ with respect to the
design variables, as well as Hessian-vector products (the gradients’
directional derivatives). We show in Appendix B how to efficiently
compute this required derivative information and provide more
implementation details in Appendix A.

Optimizing X-shells. This design optimization of (5) facilitates an
inverse design mode where the user edits the target geometry and
alters the fitting weights. It can also be used as an automated tool for
improving an existing structure created with our interactive design
interface described in Section 7; in this mode we choose xtgt as the
joint positions of the original deployed structure and construct a
target surface by triangulating the linkage’s quads. We refine this
mesh with two steps of Loop subdivision. For all examples shown
in the paper we choose Wy,,f to have a total weight of 0.9 spread
equally across all joints. The remaining 0.1 is distributed among the
target position fitting weights in W; we found it helpful to set a 10x
higher weight in W for the joints of valence 2 (sharp corners) than
the rest to better preserve the extremities of a design.

Figure 6 illustrates how this optimization significantly improves
the quality of a given X-shell design. All examples shown in the
paper employ this method to jointly optimize flat and deployed
state.

6 OPTIMIZING ACTUATION

A key benefit of X-shells is that they can be intrinsically actuated
at the joints to deploy to the desired target shape, in contrast to
traditional grid shells whose boundary nodes need to be explicitly
forced towards pre-defined target positions.

The deployment simulation described in Section 4 applies the
same torque on each of the X-shell’s joints. While this is ideal for
fully opening all parts of the structure and avoiding large localized
deformations and forces, it is not practical for most physical de-
ployment scenarios to equip each joint with an actuator. We note
that while X-shells generally deploy into similar shapes regardless
of the actuation forces applied due to their resemblance to 1-DoF
scissor linkage structures, the precise deployed shape still depends
on where forces are applied since they must elastically deform the
beams. We therefore propose an optimization algorithm to solve for



assembly state

Fig. 8. Sparse deployment. A set of just four actuators computed by our
sparsifying algorithm deploys this X-shell to a target state that is very close
to the densely actuated model, where each joint would need to apply an
expansive torque.

a sparse set of actuation torques that best deploy the X-shell to the
desired target state.

Arbitrary Torque Actuation. We first introduce a slightly different
formulation of Equation (3) for the deployed linkage’s equilibrium
solve:

X(7) = argmin E(x) — 7 - Sg X
X

Here we drop the dependence on the design parameters p, which
we assume are known at this stage. Recall that S, is a matrix that
selects the joints’ opening angles o from the full vector x of state
variables. Note that the solution to (3) can simply be written as
x*(a) = x(7*(@)), where t*(a) is a vector with all entries equal to the
Lagrange multiplier for actuation in the angle constraint of (3). This
formulation allows us to simulate the equilibrium corresponding to
any vector of torque magnitudes r = [z, . . ., T|m]T e RIII applied
to the set J of 1-DoF rotational joints.

Sparse Actuation. Our goal is now to find a sparse vector 7 that
deploys the X-shell to the same target state as the dense actuation at
each joint, so that only few joints need to be equipped with physical
actuators. For this purpose we solve the following minimization
problem:

- ~ p
o min T(k(z)) + 1 Z‘ T, 7)
where Tpax is the maximum torque that can be safely applied by
an actuator, 7 is the weight for the sparsifying regularization term,
0 < p < 1is the power for approximating the £y “norm,” and T is the
fitting energy from (6). Here, the target joint positions are taken from
the densely actuated deployed equilibrium, and the target surface
is constructed by triangulating the linkage’s quads and performing
Loop subdivision. For the examples shown in the paper, we opted to
keep all joints of the sparsely deployed structure as close as possible
to their original positions, so we set Wy,,f = 0 and weighted each
joint equally in W.

When p = 0, the regularization term directly counts the number
of actuators, but results in an extremely challenging optimization
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Fig. 9. Performance of the £, regularization term for optimizing actuation.
Each dot corresponds to a different value for 1 that controls the trade-off
between fitting term and sparseness of the actuation. p = 1/2 consistently
leads to fewer actuators and smaller deviation from the target shape.

problem. The common approach is to replace this non-convex £y
“norm” with the convex approximation obtained by setting p = 1.
Choosing the ¢; norm indeed leads to a sparse vector of torques
in our setting, but does not drive the smaller torques to zero quite
as aggressively as we want. Also, since our problem is already a
nonconvex minimization, it is less essential to use a convex regular-
ization term.

Several techniques have been proposed to improve on ¢; with
nonconvex regularization terms. For instance, one can iteratively
weight the £; norm to place more emphasis on the small entries
[Candes et al. 2008] or reformulate the £y term using complementar-
ity constraints [Feng et al. 2013]. The former is not efficient in our
setting since each weighted instance of the £; sparsification problem
is still a nonconvex minimization, and the latter did not work well in
our experiments. Instead we chose to minimize (7) with 0 < p < 1.
For this choice of p, calculating the derivatives of the regularization
term involves nearly dividing by zero as torques approach zero.
This is avoided in [Chartrand 2007] by adding an epsilon term to
the denominator, but we prefer to introduce a change of variables,
defining a new variable vector t € RII with t; = Tf’ . Then we can
write the minimization problem as:

min  TR('P)) +n > b, ®)

0<t; <thy

where the regularization term has now become a standard £; norm
in the new variables. We note the similarity of this formulation to
the SIMP method used to encourage binary designs in topology
optimization [Sigmund 2001].

Figure 8 shows an example where only four actuators are suffi-
cient to deploy the X-shell to its desired target configuration. By
varying n, we can explore the trade-off between preserving the de-
ployed shape and using fewer actuators. To compare the various
choices of regularization terms, we ran a sweep over n and plotted
the approximation distance as a function of the number of actu-
ators; see Figure 9 for the results. We found that p = 1/2 leads
to consistently better results compared to the standard £; norm
(p = 1) in all our experiments. The other values for p that we tested
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Fig. 10. Overview of our design tool. Starting from a regular quadrilateral
grid, the designer adds or deletes nodes in the graph, controls the positioning
of joints using a variety of direct manipulation tools, and evaluates the
resulting deployed shape computed with our forward simulation algorithm.
Once an overall satisfactory shape has been found, the optimization method
refines the design to reduce the internal elastic energy of both the flat
assembly state and deployed target state.

(1/3,1/4,1/8, ...) gave indistinguishable results from p = 1/2 but
took longer to converge.

Note that since the deployed equilibrium shape is closely pre-
served, the sparse set of actuators still need to output the same
amount of total work to deploy the structure as the original dense
actuators. Therefore the torque each actuator must apply is roughly
inversely proportional to the number of actuators. The torque bound
Tmax Will automatically stop further sparsification once the actua-
tors’ force output limits are reached.

7 RESULTS

We integrate forward simulation (Section 4) and design optimiza-
tion (Section 5) into a form-finding tool that enables interactive
exploration of X-shell designs. As illustrated in Figure 10 and the ac-
companying video, our tool allows the designer to manipulate both
the topology of the beam network and the initial joint locations. Our
implementation is integrated in the professional modeling software
Rhinoceros3D in order to leverage direct manipulation tools such as
cage-based editing, smart brushes, and smooth warping functions
to manipulate joint locations.

Figure 14 shows a collection of X-shells to give a sense of the
kind of designs possible with our approach. Note that none of these
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Table 1. Statistics for some of our designs. Timings for forward simulation
(sim) and design optimization (opt) are in seconds, measured on a MacBook
Pro (2017), 3.1 GHz Intel core i7-7920HQ.

X-shell ‘ segments joints  DoF  sim opt
Fig. 6 264 146 8970 1.618 97.56
Fig. 7 top 440 237 14893 4.023 58.68
Fig. 7 bot. 216 122 7362 2.202 20.5
Fig. 10 438 238 14844  3.00 167
Fig. 13 288 157 9765  2.09 17.36

examples could be realized with traditional grid shells, highlight-
ing how our approach offers new form typologies for design. The
examples in the bottom row of the figure illustrate how the defor-
mation behavior of an X-shell depends on the cross-section profile
of the beams, which in turn determines the stiffness parameters for
stretching, bending, and twisting as discussed in Section 3.

Table 1 lists some performance data and other statistics of the
shown examples.

Physical Prototypes. Figure 2 and Figures 11 to 13 show physical
prototypes that we fabricated from different standard materials:
wood, aluminum, and fiberglass. These examples indicate how dif-
ferent graph layouts and beam material properties can achieve inter-
esting freeform structures that correspond closely to the simulated
digital models.

All our physical prototypes use simple riveting to implement
rotational joints for the beams. The model in Figure 2 is assembled
from L-shaped aluminum profiles of 10mm X 10 mm with 1 mm
material thickness and deploys into a negatively curved target state
approximating a hyperboloid. Observe how the beams are bent in
the flat state, but almost straight but twisted in the deployed state.

For deployment, we did not have torque actuators at our disposal,
so we instead opted for a simpler strategy that pulls the structure
open using strings (see Figure 12 and accompanying video). Even
though the corresponding forces differ significantly from the cal-
culated torque actuation, the optimized actuation joint set still in-
formed us where to attach the ropes, and the deployed shape was
closely reproduced. This points to a key advantage of X-shells: es-
sentially, a well-designed X-shell behaves like a 1-DoF linkage, with
just a single low energy deployment path. In this sense, the target
shape is directly encoded in the flat assembly state, which makes the
deployment robust under deviations from the prescribed actuation
mechanism. There is one subtlety though: Since the assembly state
is flat, there is ambiguity (mirror symmetry) in the vertical direction
when deploying the structure. Friction and gravity typically break
this symmetry in the desired way, but sometimes explicit control is
necessary as in Figure 12.

Architectural Design Study. Figure 1 shows a speculative design
studies to illustrate potential applications in architecture. X-shells
offer a number of key advantages for construction: simple assem-
bly on the ground from linear beam elements joined with identical
rotational joints; fast and robust deployment; no need for any tem-
porary formwork. This makes them ideally suited for temporary
spaces, cost-constrained projects, or environments where involved



Fig. 11. Positive and negative curvature in a double-dome structure com-
posed of wooden slats with a rectangular profile of 15.7mm x 8.1mm. As
shown in the zoom, a material defect in one of the beams—a poorly aligned
wood grain direction—led to a fracture at the last step of opening.

Fig. 12. Resting on only few ground contact points, this double-wing X-shell

naturally supports complex free boundaries. The fiberglass beams have a
rectangular profile of 12mm X 8 mm. In this example, we use additional
ropes to suspend the structure, which ensures that the vertical symmetry of
the planar assembly state is broken in the desired way so that the “wings”
are deployed upwards. The bottom images show intermediate stage of the
deployment process.

construction processes are difficult to perform. Additional facade
elements, such as glass panels, can be added after deployment. Cer-
tain types of cladding could even be integrated during assembly.
For example, the flexible EFTE membranes shown in Figure 1 could
be attached to the beams in the flat state, then be inflated to form
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Fig. 13. This positively curved surface is assembled from fiberglass beams

with rectangular profile of 15mm X 3mm. Due to the beams’ weak resistance

to out-of-plane bending, the assembly configuration does not lie flat, neither
in our simulation nor in the fabricated prototype.

stiff cushions after deployment. Potentially, deployment could even
be driven by the inflation process, providing a fairly uniform and
distributed expansive actuation across the structure.

While our focus in this paper is on large-
scale applications in architecture, our phys-
ical prototypes inspired other use cases, such
as kitchen utensils (deployable pasta drainer),
a retractable children’s playpen, or deploy-
able furniture such as foldable chairs or coat
hangers (see inset). For these applications,
the compactness of the assembly state offers
additional advantages for transport and storage.

8 LIMITATIONS AND FUTURE WORK

Our current optimization-based design approach makes several sim-
plifying assumptions with respect to the physical realizations of
our prototypes or potential industrial applications. Joints in our
prototypes are realized by rivets to support the required rotational
motion. We do not currently take into account distortions in the
beam stiffnesses at the joints due to the hole required to accommo-
date the shaft passing through both connected beams. These holes
can create weak points that led to material failure in the prototype
using wooden slats (Figure 11).

The geometric representation of X-
shells assumes that crossing beams spa-
tially coincide at the joints, while phys-
ical realizations require an offset dis-
tance between joined beams. For the
rectangular and L-shaped beam profiles
of our physical prototypes, we observed
that this discrepancy did not lead to sig-
nificant error between simulated and
observed model. For large-scale architectural deployments, joints
such as the one shown in the inset could be used. However, in this
case, the offset distance between joined beams could be significant
and should be accounted for in the model.
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Fig. 14. X-shell design zoo. A large variety of double curved geometries can be deployed from flat assembly states. The bottom row shows how different
cross-section geometries of elastic beams (sketched next to the models) of the same material lead to different stiffness parameters, and consequently different
deployed states for the same assembly configuration. This offers additional control for form finding and design optimization.

Our current representation is restricted to valence-4 interior
joints. Extensions to more general networks require more complex
joints, which poses an interesting avenue for future research. The
core of our simulation approach should extend naturally though.

The simulation framework supports varying the cross-sectional
profile and material properties along a beam. Currently this func-
tionality is not exposed in the design framework and none of our
prototypes explores these additional degrees of freedom for design.
Since modern production processes such as laser cutting or extru-
sion casting allow varying the cross-sectional profile of beams, this
could be an interesting extension to explore in the future. Simi-
larly, we currently assume that all beams have a straight rest shape.
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Curved rest shapes offer even more design flexibility and might help
to improve the structural performance of an X-shell.

Each X-shell design has to negotiate trade-offs in geometric and
physical complexity, structural efficiency, and artistic expression.
Interesting questions arise in how to best navigate these trade-
offs and more research is needed to develop effective design tools
that can incorporate all the above mentioned additional design
parameters not currently considered in our system.

Not all X-shells perform equally well. Certain target shapes cannot
be approximated well or would require X-shells with high internal
stress, which would make them impractical to build. At this stage
we do not have a formal classification of the space of shapes that
permit efficient X-shell realizations, nor do we have a solution for



the general inverse design problem. Our optimization method re-
quires a reasonable initialization that is currently provided by the
forward simulation approach. How to automatically find such an
initialization for arbitrary design surfaces remains an open question.
Similarly, a comprehensive structural analysis of X-shells under dif-
ferent load scenarios offers interesting avenues for future research.

9 CONCLUSION

We introduced X-shells as a new type of deployable structure and
presented novel computational methods to explore X-shell designs.
The key aspect of our work is a careful analysis and design of
numerical solvers based on a reduced model representation and
suitable parameterization of the design space. We found this to be
essential to obtain robust and efficient algorithms for handling the
complex buckling behavior of interconnected elastic beams that
give rise to a geometrically rich space of deployable forms.

X-shells are just one instance of a broader class of deployable
structures that are distinguished by a coupled interaction of continu-
ously deforming elements. For example, bird wings are composed of
individual flexible feathers that interact in complex ways to optimize
flight performance. These and other examples pose fascinating new
research challenges in terms of mathematical and geometric model-
ing, robust and efficient numerical simulation and optimization, as
well as novel interactive design metaphors.
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A IMPLEMENTATION ASPECTS

In this section, we comment on additional implementation aspects of
our numerical solvers for forward simulation, design optimization,
and actuation sparsification presented above.

Elastic energy Hessians and their derivatives. The full expressions
of (1) are provided in the supplemental material. We also give a
derivation of the gradients and Hessians that corrects errors in
the original equations of [Bergou et al. 2010]. The Hessian-vector
product formulas needed to run Newton-CG on the design opti-
mization and actuation sparsification problems require computing
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directional derivatives of the elastic energy Hessian (i.e., third de-
rivative information). We compute these efficiently using automatic
differentiation of our hand-coded Hessian formulas.

3D Rotations. Our simulation algorithm for X-shells requires op-
timizing over the 3D rotation of each joint. We choose an approach
that avoids singularities (gimbal lock) and leads to relatively simple
and efficient formulas for the gradients and Hessians of the rotation
matrix: the tangent space to SO(3) at a particular reference rotation
(i.e., the infinitesimal rotations). By updating this reference rotation
to the current rotation at each Newton step (resetting the corre-
sponding optimization variables to zero), singularities like gimbal
lock are eliminated and the derivative formulas are simplified-only
variations around the identity need to be computed, and many terms
of the derivatives vanish. However, we still need the full derivative
formulas to enable comparison against an off-the-shelf optimizer
that does not support manually resetting the optimization variables
at each iteration and to calculate third derivatives by automatic
differentiation. We provide these full gradient and Hessian formulas
in the supplemental material.

Numerically robust formulas. Several formulas used in our paper
must be implemented with care. To prevent floating point over-
flows, the KS function used to aggregate the minimum angle con-
straints must actually be implemented in the following mathemati-
cally equivalent form [Martins and Poon 2005]:

min(a)-a;
KS(a, s) = min(a) — slog Z e s
i

For small magnitudes of the infinitesimal rotation variables—extremely
common due to our strategy of resetting the rotation parametrization—
several terms in the rotations’ gradient and Hessian formulas degen-
erate to %. We provide robust formulas based on Taylor expansions
of the problematic terms in the supplemental material.

Trust regions and iterate evaluation. In both the design optimiza-
tion and actuation sparsification algorithms, evaluating the objective
and constraints at a new set of design parameters (recomputing the
closed and deployed equilibria) is efficient provided the change
in parameters is not too great: only a few iterations of Newton’s
method are needed. However, large steps will require many Newton
iterations in the inner equilibrium solves and, worse, often cause
the elastic energy Hessian to become indefinite, further slowing the
equilibrium solver. To keep the optimization fast we use Knitro’s
trust region optimizer [Artelys 2019]. We found that, in practice,
after one or two iterations Knitro has determined a reasonable trust
region radius that keeps subsequent iterations fast.

We can also exploit our existing elastic energy Hessian factor-
izations for the flat and deployed states to further improve the
performance of our inner Newton solver—thereby enabling the
outer Newton CG algorithm to take larger steps. Instead of sim-
ply applying the new design parameters/actuation forces to the
linkage and rerunning the equilibrium solver initialized with the
previous iterate’s equilibrium configuration, we can use the pre-
factored Hessians to predict the equilibrium deformation under the
new settings. Given a parameter step op requested by the outer
optimization, we construct a second order Taylor expansion of the
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equilibrium displacements along this direction. Considering the
deployed equilibrium as an example,

ox* D 82 *D

X3 (P + 0p) = X3p(p) + 5p + 5p Ipdp ——=6p +0(6p°).

In Section B, we compute the first order change — X3D

dp as the quan-

tity x5, and show how to find second order change spT Bp BD Sp.

This strategy particularly benefits the design optimization, where
it reduces the likelihood of the elastic energy Hessians in the inner
equilibrium solves becoming indefinite: applying even mild changes
to the design parameters while holding the equilibrium fixed of-
ten immediately puts the structure in an indefinite configuration.
In principle, higher order or multiple-step continuation methods
could also be applied [Allgower and Georg 2012; Chen et al. 2014] at
the cost of additional computational and implementation complexi-
ties (e.g., computing fourth derivatives of elastic energy). For the
purposes of accelerating the outer optimization, this simple second-
order continuation method strikes a good balance of reducing the
subsequent Newton corrector iterations with low overhead: just
two additional backsolves for each configuration.

Sparse factorizations. We compute sparse Cholesky factorizations
of the elastic energy Hessians H using Cholmod [Chen et al. 2008],
which also informs us when H is indefinite so that we can apply
our modification scheme to form H. Since the sparsity pattern of H
remains fixed across all equilibrium solves (and is identical for both
the flat and deployed linkages), we perform a single symbolic factor-
ization that we re-use throughout the entire design optimization. We
update the numeric factorizations of the flat and deployed structure
Hessians at the end of each Newton iteration (4). We finally use the
factorizations computed at the end of the final iteration to compute
the adjoint state variables (for the design problem’s gradients), the
directional derivatives of the equilibrium and adjoint state variables
(for the Hessian-vector products), and the second directional deriva-
tives of the equilibrium (for predicting the equilibria at the next
design optimization iterate) with back substitution.

Constants. The number of linear elements k comprising each rod
is set to 10 for all examples shown in the paper. This was chosen by
comparing the accuracy of a discrete rod with k segments against an
analytical solution for a planar elastica curve; 10 subdivisions gives
less than 1% error in the bending forces over the range of bending
magnitudes an X-shell might reasonably experience.

B GRADIENTS AND HESSIANS

We describe how to compute the derivative information required
to apply Newton CG to the design optimization (5) proposed in
Section 5. We present only the objective function’s derivatives here,
since the process for differentiating the constraints is analogous, but
we provide the full set of formulas in the supplementary material.
For gradients, we solve for the adjoint deployed state vector w:

Hsp al||w _ W(XED - tht) + I/‘/s.urf(xg[) = Psurf (X;D) )
al o |wy 0 ’
Ksp
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where Hsp = ax e (XSD(p) p) is the elastic energy Hessian for the
deployed X-shell equilibrium, and scalar w) is ignored. With this
adjoint state, we can efficiently evaluate the objective’s gradient,

a (1-y) o B_r
ap Eap(ZD’ R

L (D)
—— (X305 P)-
axap 0P
To compute Hessian-vector products we compute the variations

of forward and adjoint state vectors 5x2D, Ox% ., and dw that arise
from parameter perturbation §p by solving:

3D’

* 62}2 *
Ksp 5X3D — | 9xdp (XSD’ P)op ,
843D 0
* O Py
Ksp 5w] _ WXy + Waus ((Sx;D - f(Sx;D)
5W/1 0

I*E * SE
— [( Ox0x0x (XSD’ p)(sng + 0x0x0p (X;D’ p)ap) W] ,
0

where the derivative of the closest point projection 855)‘:“ can be
computed as I-n®n when the closest point lies on a surface triangle
with normal n, e ® e when it lies on a surface edge with normalized
edge vector e, and 0 when it lies on a vertex. The formula for §x
is analogous to 0%, and is given in the supplement.

The Hessian-vector products for J can now be calculated:

0] »E »E
=T ,P)OX, + —— (X1, P)S
apap P Fo (apa (XzD p) XoD apap (XZD p)Sp
L=y 9°E

Eo apax( 3D’ P) 3D a 6 (XgD, P) P

_EZ apax (X3D7P)
2 0
8’E 3*E
_ﬁz [apﬁxf)x (X3ps PYSXs5p + Fraxap (X§D’P)5P] W
l 0
0

Notice that we can reuse the factorization of K3p that was com-
puted to solve the adjoint equation, so the added cost for computing
a Hessian-vector product for the objective is simply three additional
back substitutions for 5X2D, 5X’3TD, and dw. While these formulas
involve third derivatives of the elastic energy, really only the direc-
tional derivative of the elastic energy Hessian is needed. Since we
have efficient analytic Hessian expressions for our forward simula-
tion, these directional derivatives can be calculated inexpensively
with automatic differentiation (differentiating a function that imple-
ments the elastic energy Hessian-vector product).

Finally, the second order change in the deployed equilibrium
induced by perturbing the design parameters by Jp is:

T 9% E PE x
Ksp P" Fpap P _ (axaxax5X3D * Fxaxap P )5X3D
5 T 0 Ag[)a 0
P pap °P

O°E _OE_
[( 0x0pOx 5X3D + 9xOpdp 5p) 5p} s
0

and analogously for x5,
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